Explore Basis Trade Data

Explore Basis Trade Data#

import pandas as pd
import polars as pl

from matplotlib import pyplot as plt
import seaborn as sns
sns.set()

from settings import config
import load_bases_data

DATA_DIR = config("DATA_DIR")
MANUAL_DATA_DIR = config("MANUAL_DATA_DIR")

Arbitrage Spreads#

df = load_bases_data.load_combined_spreads_wide(data_dir=MANUAL_DATA_DIR)
# df = df.ffill(limit=5).dropna()
# df.info()
df.info()
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 5563 entries, 2001-12-04 to 2024-02-28
Data columns (total 32 columns):
 #   Column             Non-Null Count  Dtype  
---  ------             --------------  -----  
 0   Box_06m            4435 non-null   float32
 1   Box_12m            4423 non-null   float32
 2   Box_18m            4435 non-null   float32
 3   CDS_Bond_HY        4280 non-null   float32
 4   CDS_Bond_IG        4437 non-null   float32
 5   CIP_AUD            5563 non-null   float32
 6   CIP_CAD            5456 non-null   float32
 7   CIP_CHF            5562 non-null   float32
 8   CIP_EUR            5562 non-null   float32
 9   CIP_GBP            5561 non-null   float32
 10  CIP_JPY            5493 non-null   float32
 11  CIP_NZD            5374 non-null   float32
 12  CIP_SEK            4894 non-null   float32
 13  Eq_SF_Dow          5106 non-null   float32
 14  Eq_SF_NDAQ         5090 non-null   float32
 15  Eq_SF_SPX          5088 non-null   float32
 16  TIPS_Treasury_02Y  4687 non-null   float32
 17  TIPS_Treasury_05Y  4687 non-null   float32
 18  TIPS_Treasury_10Y  4687 non-null   float32
 19  TIPS_Treasury_20Y  4687 non-null   float32
 20  Treasury_SF_02Y    4211 non-null   float32
 21  Treasury_SF_05Y    4575 non-null   float32
 22  Treasury_SF_10Y    4801 non-null   float32
 23  Treasury_SF_20Y    4836 non-null   float32
 24  Treasury_SF_30Y    2412 non-null   float32
 25  Treasury_Swap_01Y  5563 non-null   float32
 26  Treasury_Swap_02Y  5551 non-null   float32
 27  Treasury_Swap_03Y  5515 non-null   float32
 28  Treasury_Swap_05Y  5515 non-null   float32
 29  Treasury_Swap_10Y  3900 non-null   float32
 30  Treasury_Swap_20Y  3106 non-null   float32
 31  Treasury_Swap_30Y  3106 non-null   float32
dtypes: float32(32)
memory usage: 738.8 KB
df.tail()
Box_06m Box_12m Box_18m CDS_Bond_HY CDS_Bond_IG CIP_AUD CIP_CAD CIP_CHF CIP_EUR CIP_GBP ... Treasury_SF_10Y Treasury_SF_20Y Treasury_SF_30Y Treasury_Swap_01Y Treasury_Swap_02Y Treasury_Swap_03Y Treasury_Swap_05Y Treasury_Swap_10Y Treasury_Swap_20Y Treasury_Swap_30Y
date
2024-02-22 NaN NaN NaN NaN NaN 8.251404 17.293579 17.858582 5.813416 8.302063 ... -16.325012 -74.609985 -211.763977 4.56 -13.77 -21.139999 -29.330000 -41.220001 -69.800003 -78.449997
2024-02-23 NaN NaN NaN NaN NaN 6.583923 18.220825 12.748291 4.431885 8.169006 ... -15.239990 -59.401978 -190.694977 6.46 -13.30 -20.480000 -29.780001 -42.310001 -71.440002 -77.029999
2024-02-26 NaN NaN NaN NaN NaN 5.156189 18.380493 10.448364 2.971252 8.405518 ... -14.094971 -65.319977 -183.165985 5.58 -12.50 -20.879999 -28.650000 -42.099998 -71.699997 -77.980003
2024-02-27 NaN NaN NaN NaN NaN 6.320984 17.697937 18.856445 6.171143 8.237305 ... -18.984985 -63.867981 -194.381989 5.60 -12.95 -22.200001 -30.320000 -43.040001 -72.839996 -79.169998
2024-02-28 NaN NaN NaN NaN NaN 8.978394 18.759705 27.148132 8.660278 8.211975 ... -12.888000 -79.199005 -191.681000 4.94 -12.23 -21.049999 -28.900000 -42.540001 -71.650002 -77.550003

5 rows × 32 columns

df.reindex(sorted(df.columns), axis=1).filter(regex=("Treasury_SF_*")).info()
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 5563 entries, 2001-12-04 to 2024-02-28
Data columns (total 5 columns):
 #   Column           Non-Null Count  Dtype  
---  ------           --------------  -----  
 0   Treasury_SF_02Y  4211 non-null   float32
 1   Treasury_SF_05Y  4575 non-null   float32
 2   Treasury_SF_10Y  4801 non-null   float32
 3   Treasury_SF_20Y  4836 non-null   float32
 4   Treasury_SF_30Y  2412 non-null   float32
dtypes: float32(5)
memory usage: 152.1 KB
df.reindex(sorted(df.columns), axis=1).filter(regex=("Treasury_SF_*")).plot()
<Axes: xlabel='date'>
../_images/c834a681d3135599415969728733d5da26bf713cd2d522fb88495dfad507d61c.png
(
    df
    .loc["2023":,:]
    .reindex(sorted(df.columns), axis=1)
    .filter(regex=("Treasury_SF_*"))
    .plot()
)
plt.ylim([-300,200])
(-300.0, 200.0)
../_images/981849148ad136ac63f4f10f40e14545d44732684ea7ca0a6260c414f45ad8f8.png
(
    df
    .loc["2024-07":,:]
    .reindex(sorted(df.columns), axis=1)
    .filter(regex=("Treasury_SF_*"))
    .plot()
)
plt.ylim([-300,200])
(-300.0, 200.0)
../_images/53f686e61f3ff447acba1e5b3a79a4dff665ca3a2b7f5e074828a1b768248daa.png
df.reindex(sorted(df.columns), axis=1).filter(regex=("Treasury_SF_*")).plot()
plt.ylim([-300,200])
(-300.0, 200.0)
../_images/d86d7c0915943d872f4b65b7d5567fb55426b3fab7df5bec27ea8574c44cca6c.png
WINDOW = 30
ax= df.reindex(sorted(df.columns), axis=1).filter(regex=("TIPS_*")).rolling(WINDOW).mean().plot()
# plt.ylim([-100,100])
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])

# Put a legend to the right of the current axis
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))

plt.ylabel(f"Spread (bps), {WINDOW}-day Rolling Mean")
plt.title("TIPS-Treasury Arbitrage Spread");
../_images/85e5ba5c7fb5df894792350d14417051671e8164aa19ed6f5673a854043aa985.png
WINDOW = 30
ax= df.reindex(sorted(df.columns), axis=1).filter(regex=("Treasury_SF_*")).rolling(WINDOW).mean().plot()
# plt.ylim([-100,100])
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])

# Put a legend to the right of the current axis
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))

plt.ylabel(f"Spread (bps), {WINDOW}-day Rolling Mean")
plt.title("Treasury Cash Futures Arbitrage Spread\nFutures-implied risk-free rate minus OIS rate");
../_images/a5ae76b477986d269bec0f3eecb2a8a9dd822241d308eb575104292f21c71478.png
WINDOW = 30
ax= df.reindex(sorted(df.columns), axis=1).filter(regex=("Treasury_Swap_*")).rolling(WINDOW).mean().plot()
# plt.ylim([-100,100])
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])

# Put a legend to the right of the current axis
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))

plt.ylabel(f"Spread (bps), {WINDOW}-day Rolling Mean")
plt.title("Treasury Swap Arbitrage Spread");
../_images/5b27f736ec309a610d73fd09b19b7eb3e7325c50a677eba93804961bb4afc58e.png
WINDOW = 30
ax= df.reindex(sorted(df.columns), axis=1).filter(regex=("CIP_*")).rolling(WINDOW).mean().plot()
# plt.ylim([-100,100])
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])

# Put a legend to the right of the current axis
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))

plt.ylabel(f"Spread (bps), {WINDOW}-day Rolling Mean")
plt.title("CIP Arbitrage Spread");
../_images/c54046f3783a38f736ae0cc89c2dfb64165002a34230237124ee8c7f67a55233.png
df
Box_06m Box_12m Box_18m CDS_Bond_HY CDS_Bond_IG CIP_AUD CIP_CAD CIP_CHF CIP_EUR CIP_GBP ... Treasury_SF_10Y Treasury_SF_20Y Treasury_SF_30Y Treasury_Swap_01Y Treasury_Swap_02Y Treasury_Swap_03Y Treasury_Swap_05Y Treasury_Swap_10Y Treasury_Swap_20Y Treasury_Swap_30Y
date
2001-12-04 NaN NaN NaN NaN NaN 52.145401 NaN 13.314026 9.184860 11.789230 ... NaN NaN NaN 7.60 NaN NaN NaN NaN NaN NaN
2001-12-05 NaN NaN NaN NaN NaN 46.005219 NaN 12.012970 5.848602 15.825348 ... NaN NaN NaN 8.10 NaN NaN NaN NaN NaN NaN
2001-12-06 NaN NaN NaN NaN NaN 49.061096 NaN 16.064270 10.815582 12.939957 ... NaN NaN NaN 4.80 NaN NaN NaN NaN NaN NaN
2001-12-07 NaN NaN NaN NaN NaN 58.456711 NaN 15.164368 10.896408 21.666672 ... NaN NaN NaN 5.30 NaN NaN NaN NaN NaN NaN
2001-12-10 NaN NaN NaN NaN NaN 53.464584 NaN 12.022736 8.434219 14.334442 ... NaN NaN NaN 2.20 NaN NaN NaN NaN NaN NaN
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
2024-02-22 NaN NaN NaN NaN NaN 8.251404 17.293579 17.858582 5.813416 8.302063 ... -16.325012 -74.609985 -211.763977 4.56 -13.77 -21.139999 -29.330000 -41.220001 -69.800003 -78.449997
2024-02-23 NaN NaN NaN NaN NaN 6.583923 18.220825 12.748291 4.431885 8.169006 ... -15.239990 -59.401978 -190.694977 6.46 -13.30 -20.480000 -29.780001 -42.310001 -71.440002 -77.029999
2024-02-26 NaN NaN NaN NaN NaN 5.156189 18.380493 10.448364 2.971252 8.405518 ... -14.094971 -65.319977 -183.165985 5.58 -12.50 -20.879999 -28.650000 -42.099998 -71.699997 -77.980003
2024-02-27 NaN NaN NaN NaN NaN 6.320984 17.697937 18.856445 6.171143 8.237305 ... -18.984985 -63.867981 -194.381989 5.60 -12.95 -22.200001 -30.320000 -43.040001 -72.839996 -79.169998
2024-02-28 NaN NaN NaN NaN NaN 8.978394 18.759705 27.148132 8.660278 8.211975 ... -12.888000 -79.199005 -191.681000 4.94 -12.23 -21.049999 -28.900000 -42.540001 -71.650002 -77.550003

5563 rows × 32 columns

# ax= (
#     df
#     .reindex(sorted(df.columns), axis=1)
#     .filter(regex=("CIP_*"))
#     .loc["2024-07":,:]
#     .dropna()
#     .plot()
# )

# plt.ylim([-100,100])
# box = ax.get_position()
# ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])

# # Put a legend to the right of the current axis
# ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))

# plt.ylabel(f"Spread (bps)")
# plt.title("CIP Arbitrage Spread");